import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;
import javax.swing.*;
import java.awt.*;
// This file gives an example of doing simple
// graphical user interface (GUI) in Java using
// the Swing API.
//
// You can use this file as a template for the GUI
// part of your solution to Homework 2.
//
// The various classes involved are described
// briefly below. The main thing you need to
// modify (other than renaming classes) is the
// DemoPanel class, which is the GUI component
// that should display your tree.
public class GUIExample {
// The main method creates a frame object and
// displays it.
public static void main(String[] args) {
// you will put all preprocessing steps here
// display the frame window
DemoFrame frame = new DemoFrame("x", "y");
frame.setTitle("GUI Demonstration");
frame.show();
}
}
// Frame objects are movable frame windows; they
// can contain other GUI components like buttons,
// text areas, and panels. DemoFrame is a frame
// class that contains a panel; right now, the panel
// displays a hard-coded tree picture (see the
// class DemoPanel).
class DemoFrame extends JFrame {
private DemoPanel panel;
public DemoFrame(String str1, String str2) {
final int DEFAULT_FRAME_WIDTH = 300;
final int DEFAULT_FRAME_HEIGHT = 300;
// set the size of the frame window
setSize(DEFAULT_FRAME_WIDTH, DEFAULT_FRAME_HEIGHT);
// create and install a "listener object"
// (event handler) to listen for window events
WindowCloser listener = new WindowCloser();
addWindowListener(listener);
// create a panel object and install it in
// the "content pane"
panel = new DemoPanel(str1, str2);
Container contentPane = getContentPane();
contentPane.add(panel, "Center");
}
// The class WindowCloser is a listener (event
// handler) class.
private class WindowCloser extends WindowAdapter {
// When the user closes the frame window, we
// kill the program.
public void windowClosing(WindowEvent event) {
System.exit(0);
}
}
}
// THIS IS THE CLASS YOU NEED TO MODIFY.
// Panel objects are GUI components that you
// can draw on. A panel object should store
// as instance data all the information it needs
// to repaint itself. In this simple example,
// objects of type DemoPanel just store a string
// called childName, which is used to draw a
// diagram of a small, hard-coded "tree".
class DemoPanel extends JPanel {
private String firstVar;
private String secondVar;
public DemoPanel(String str1, String str2) {
firstVar = str1;
secondVar = str2;
}
// The paintComponent method is called every time
// that the panel needs to be displayed or refreshed.
// Anything you want drawn on the panel should be drawn
// in this method. In this example, a small tree is
// "hard-coded". More typically, the panel could store
// a reference to an object with a graphical representation
// (like a tree), and we'd call an instance method of that
// object to get it to draw itself. Note: this method
// gets passed (as parameter "page") a reference to the
// current graphical context object of the GUI component;
// all drawing is done through the "page" reference.
public void paintComponent(Graphics page) {
// leave the next line in
super.paintComponent(page);
// replace this code with a method call that draws your tree
page.setColor(Color.green);
page.fillOval(ROOT_X, ROOT_Y, 2*RADIUS, 2*RADIUS);
page.fillOval(ROOT_X+H_SKIP, ROOT_Y+V_SKIP,
2*RADIUS, 2*RADIUS);
page.drawLine(ROOT_X+RADIUS,ROOT_Y+RADIUS,ROOT_X+H_SKIP+RADIUS,ROOT_Y+V_SKIP+RADIUS);
page.setColor(Color.black);
page.drawString(firstVar, ROOT_X + RADIUS - SPACE, ROOT_Y + RADIUS + SPACE);
page.drawString(secondVar, ROOT_X + H_SKIP + RADIUS - SPACE, ROOT_Y + V_SKIP + RADIUS + SPACE);
}
private static final int ROOT_X = 70;
private static final int ROOT_Y = 100;
private static final int V_SKIP = 60;
private static final int H_SKIP = 60;
private static final int RADIUS = 15;
private static final int SPACE = 3;
}
---------------------------
import java.io.*;
import java.util.*;
public class ID3 {
int numAttributes; // The number of attributes including the output attribute
String []attributeNames; // The names of all attributes. It is an array of dimension numAttributes. The last attribute is the output attribute
/* Possible values for each attribute is stored in a vector. domains is an array of dimension numAttributes.
Each element of this array is a vector that contains values for the corresponding attribute
domains[0] is a vector containing the values of the 0-th attribute, etc..
The last attribute is the output attribute
*/
Vector []domains;
/* The class to represent a data point consisting of numAttributes values of attributes */
class DataPoint {
/* The values of all attributes stored in this array. i-th element in this array
is the index to the element in the vector domains representing the symbolic value of
the attribute. For example, if attributes[2] is 1, then the actual value of the
2-nd attribute is obtained by domains[2].elementAt(1). This representation makes
comparing values of attributes easier - it involves only integer comparison and
no string comparison.
The last attribute is the output attribute
*/
public int []attributes;
public DataPoint(int numattributes) {
attributes = new int[numattributes];
}
};
/* The class to represent a node in the decomposition tree.
*/
class TreeNode {
public double entropy; // The entropy of data points if this node is a leaf node
public Vector data; // The set of data points if this is a leaf node
public int decompositionAttribute; // If this is not a leaf node, the attribute that is used to divide the set of data points
public int decompositionValue; // the attribute-value that is used to divide the parent node
public TreeNode []children; // If this is not a leaf node, references to the children nodes
public TreeNode parent; // The parent to this node. The root has parent == null
public TreeNode() {
data = new Vector();
}
};
/* The root of the decomposition tree */
TreeNode root = new TreeNode();
/* This function returns an integer corresponding to the symbolic value of the attribute.
If the symbol does not exist in the domain, the symbol is added to the domain of the attribute
*/
public int getSymbolValue(int attribute, String symbol) {
int index = domains[attribute].indexOf(symbol);
if (index < 0) {
domains[attribute].addElement(symbol);
return domains[attribute].size() -1;
}
return index;
}
/* Returns all the values of the specified attribute in the data set */
public int []getAllValues(Vector data, int attribute) {
Vector values = new Vector();
int num = data.size();
for (int i=0; i< num; i++) {
DataPoint point = (DataPoint)data.elementAt(i);
String symbol = (String)domains[attribute].elementAt(point.attributes[attribute] );
int index = values.indexOf(symbol);
if (index < 0) {
values.addElement(symbol);
}
}
int []array = new int[values.size()];
for (int i=0; i< array.length; i++) {
String symbol = (String)values.elementAt(i);
array[i] = domains[attribute].indexOf(symbol);
}
values = null;
return array;
}
/* Returns a subset of data, in which the value of the specfied attribute of all data points is the specified value */
public Vector getSubset(Vector data, int attribute, int value) {
Vector subset = new Vector();
int num = data.size();
for (int i=0; i< num; i++) {
DataPoint point = (DataPoint)data.elementAt(i);
if (point.attributes[attribute] == value) subset.addElement(point);
}
return subset;
}
/* Calculates the entropy of the set of data points.
The entropy is calculated using the values of the output attribute which is the last element in the array attribtues
*/
public double calculateEntropy(Vector data) {
int numdata = data.size();
if (numdata == 0) return 0;
int attribute = numAttributes-1;
int numvalues = domains[attribute].size();
double sum = 0;
for (int i=0; i< numvalues; i++) {
int count=0;
for (int j=0; j< numdata; j++) {
DataPoint point = (DataPoint)data.elementAt(j);
if (point.attributes[attribute] == i) count++;
}
double probability = 1.*count/numdata;
if (count > 0) sum += -probability*Math.log(probability);
}
return sum;
}
/* This function checks if the specified attribute is used to decompose the data set
in any of the parents of the specfied node in the decomposition tree.
Recursively checks the specified node as well as all parents
*/
public boolean alreadyUsedToDecompose(TreeNode node, int attribute) {
if (node.children != null) {
if (node.decompositionAttribute == attribute )
return true;
}
if (node.parent == null) return false;
return alreadyUsedToDecompose(node.parent, attribute);
}
/* This function decomposes the specified node according to the ID3 algorithm.
Recursively divides all children nodes until it is not possible to divide any further
I have changed this code from my earlier version. I believe that the code
in my earlier version prevents useless decomposition and results in a better decision tree!
This is a more faithful implementation of the standard ID3 algorithm
*/
public void decomposeNode(TreeNode node) {
double bestEntropy=0;
boolean selected=false;
int selectedAttribute=0;
int numdata = node.data.size();
int numinputattributes = numAttributes-1;
node.entropy = calculateEntropy(node.data);
if (node.entropy == 0) return;
/* In the following two loops, the best attribute is located which
causes maximum decrease in entropy
*/
for (int i=0; i< numinputattributes; i++) {
int numvalues = domains[i].size();
if ( alreadyUsedToDecompose(node, i) ) continue;
// Use the following variable to store the entropy for the test node created with the attribute i
double averageentropy = 0;
for (int j=0; j< numvalues; j++) {
Vector subset = getSubset(node.data, i, j);
if (subset.size() == 0) continue;
double subentropy = calculateEntropy(subset);
averageentropy += subentropy * subset.size(); // Weighted sum
}
averageentropy = averageentropy / numdata; // Taking the weighted average
if (selected == false) {
selected = true;
bestEntropy = averageentropy;
selectedAttribute = i;
} else {
if (averageentropy < bestEntropy) {
selected = true;
bestEntropy = averageentropy;
selectedAttribute = i;
}
}
}
if (selected == false) return;
// Now divide the dataset using the selected attribute
int numvalues = domains[selectedAttribute].size();
node.decompositionAttribute = selectedAttribute;
node.children = new TreeNode [numvalues];
for (int j=0; j< numvalues; j++) {
node.children[j] = new TreeNode();
node.children[j].parent = node;
node.children[j].data = getSubset(node.data, selectedAttribute, j);
node.children[j].decompositionValue = j;
}
// Recursively divides children nodes
for (int j=0; j< numvalues; j++) {
decomposeNode(node.children[j]);
}
// There is no more any need to keep the original vector. Release this memory
node.data = null; // Let the garbage collector recover this memory
}
/** Function to read the data file.
The first line of the data file should contain the names of all attributes.
The number of attributes is inferred from the number of words in this line.
The last word is taken as the name of the output attribute.
Each subsequent line contains the values of attributes for a data point.
If any line starts with // it is taken as a comment and ignored.
Blank lines are also ignored.
*/
public int readData(String filename) throws Exception {
FileInputStream in = null;
try {
File inputFile = new File(filename);
in = new FileInputStream(inputFile);
} catch ( Exception e) {
System.err.println( "Unable to open data file: " + filename + "\n" + e);
return 0;
}
BufferedReader bin = new BufferedReader(new InputStreamReader(in) );
String input;
while(true) {
input = bin.readLine();
if (input == null) {
System.err.println( "No data found in the data file: " + filename + "\n");
return 0;
}
if (input.startsWith("//")) continue;
if (input.equals("")) continue;
break;
}
StringTokenizer tokenizer = new StringTokenizer(input,",");
numAttributes = tokenizer.countTokens();
//System.out.println("numAttributes"+numAttributes);
if (numAttributes <= 1) {
System.err.println( "Read line: " + input);
System.err.println( "Could not obtain the names of attributes in the line");
System.err.println( "Expecting at least one input attribute and one output attribute");
return 0;
}
domains = new Vector[numAttributes];
for (int i=0; i < numAttributes; i++) domains[i] = new Vector();
attributeNames = new String[numAttributes];
for (int i=0; i < numAttributes; i++) {
attributeNames[i] = tokenizer.nextToken();
}
while(true) {
input = bin.readLine();
if (input == null) break;
if (input.startsWith("//")) continue;
if (input.equals("")) continue;
tokenizer = new StringTokenizer(input,",");
int numtokens = tokenizer.countTokens();
//System.out.println("numtokens"+numtokens);
if (numtokens != numAttributes) {
System.err.println( "Read " + root.data.size() + " data");
System.err.println( "Last line read: " + input);
System.err.println( "Expecting " + numAttributes + " attributes");
return 0;
}
DataPoint point = new DataPoint(numAttributes);
for (int i=0; i < numAttributes; i++) {
point.attributes[i] = getSymbolValue(i, tokenizer.nextToken() );
}
root.data.addElement(point);
}
bin.close();
return 1;
} // End of function readData
//-----------------------------------------------------------------------
/* This function prints the decision tree in the form of rules.
The action part of the rule is of the form
outputAttribute = "symbolicValue"
or
outputAttribute = { "Value1", "Value2", .. }
The second form is printed if the node cannot be decomposed any further into an homogenous set
*/
public void printTree(TreeNode node, String tab) {
int outputattr = numAttributes-1;
if (node.children == null) {
int []values = getAllValues(node.data, outputattr );
if (values.length == 1) {
System.out.println(tab + "\t" + attributeNames[outputattr] + " = \"" + domains[outputattr].elementAt(values[0]) + "\";");
return;
}
System.out.print(tab + "\t" + attributeNames[outputattr] + " = {");
for (int i=0; i < values.length; i++) {
System.out.print("\"" + domains[outputattr].elementAt(values[i]) + "\" ");
if ( i != values.length-1 ) System.out.print( " , " );
}
System.out.println( " };");
return;
}
int numvalues = node.children.length;
for (int i=0; i < numvalues; i++) {
System.out.println(tab + "if( " + attributeNames[node.decompositionAttribute] + " == \"" +
domains[node.decompositionAttribute].elementAt(i) + "\") {" );
printTree(node.children[i], tab + "\t");
if (i != numvalues-1) System.out.print(tab + "} else ");
else System.out.println(tab + "}");
}
}
/* This function creates the decision tree and prints it in the form of rules on the console
*/
public void createDecisionTree() {
decomposeNode(root);
printTree(root, "");
}
/* Here is the definition of the main function */
public static void main(String[] args) throws Exception {
int num = args.length;
if (num != 1) {
System.out.println("You need to specify the name of the datafile at the command line " );
return;
}
ID3 me = new ID3();
long startTime = System.currentTimeMillis(); // To print the time taken to process the data
int status = me.readData(args[0]);
if (status <= 0) return;
me.createDecisionTree();
long endTime = System.currentTimeMillis();
long totalTime = (endTime-startTime)/1000;
System.out.println( totalTime + " Seconds");
}
/* End of the main function */
}
----------------------------------------
Sunday, March 29, 2009
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment